Quantum Simulation of QFT
in the Front Form

Michael Kreshchuk!, William M. Kirby?, Hugo Beauchemin?,
Gary Goldstein?, Shaoyang Jia®, James Vary?, Peter J. Love?®

Lawrence Berkeley National Laboratory
2Tufts University
3 Argonne National Laboratory
4Jowa State University
>Brookhaven National Laboratory
NSF DGE-1842474, DOE HEP DE-SC0019452, NSF STAQ PHY-1818914

2002.04016; 2105.10941; 2011.13443; 2009.07885

Tufts B ©kxersy
BROOKHAMEN  OWASTATE Argonne &

NATIONAL LABORATORY UN]VERS]TY T IONAL LAoRATORY



Motivation .

The currently dominant approach to digital quantum simulation
of QFT is based on the equal-time lattice formulation.

A lot of progress, a lot of open questions:
I Gauge symmetry protection — highly non-trivial.
I Difficult to extract information about observables.
I Qubit number Z lattice size:
Qocp (internal DOFs) LP 1 400,000 qubits. (1)
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Can we overcome these difficulties by using some
alternative approach?



Quantum Simulation in the Front Form j

Good news:

I Fact #1: Numerous techniques for the Digital Quantum
Simulation of Quantum Chemistry have been developed in
the last decades.

I Fact #2: QFT in the light-front (LF) ! formalism looks
much like non-relativistic many-body physics!

1 Within this talk ‘front-form’  ‘light-front’  ‘light-cone’.



Quantum Field Theory in the Front Form j

The “light-cone time” 2™
and “light-cone distance” x :

The instant form The front form

From the point of view of a massless particle moving, say, to the
left, all the massive particles move to the right:

All the light-cone momenta of massive particles are positive.



Why use the LF formulation?

LF QFT features Advantages for QC
No ghost fields .
Resources Lin;gar EoM Low qubit count
LF momentum > 0 Efficient encoding
Evolution Sparse Hamiltonians Using sparsity-based
methods
LF wavefunction ¥
¥ static quantities; Simple form of
Measurement | Simple form of operators | measurement
in the second-quantized | operators
formalism
Trivial vacuum, fewer cut-offs, no fermion doubling,
Other form invariance of H, equal treatment of matter
and gauge fields in the AT = 0 gauge




DLCQ: ¢* in 1+ 1D
Discretized Light-Cone Quantization (DLCQ)?

= Light-Cone Hamiltonian + Second Quantization
1 1 A
= 7(8¢)2 §m23¢2 7¢4 )

H:Z .ala, —1—2 aalaa+z .alaama, + c.c.)
n

klmn klmn

K= Z nala,
n
We solve H in the basis of Fock states fjFig:
fiFig at K =5: j1°i, j1%,3i, j1,2%i, j1,4i, j2,3i. (3)

The number of fjFig scales as p(K) = O(exp(p?)).

M—
The lower bound on the number of qubits is | Q = O( K) |

2 H.-C. Pauli, S.J. Brodsky, PRD 32, 1985.
A. Harindranath., J.P. Vary, PRD 36, 1987.




Encoding Fock states B
Two ways of encoding a Fock state jJF1 = jn{*, ny?, .. 1.

I. Direct encoding — qubits store w; (qubit register per mode):

jTi =j01011001. . i, (4)
e e
wy w2
QDirect = O(K log K) . (5)

II. Compact encoding — qubits store n; and w;, only for w; > 0:

at most O(p?) modes

jUi =j0111010111001001. . i, (6)
N =~
n1 w1 no wa
| © J—
QCompact = O( KlogK) . (7)

In the presence of transverse dimensions:

QDirect — 6(KA€l> 1) VS. QCompact - 5(K) . (8)



Encoding Fock states B j

Should we always use compact mapping? No, because the
choice of encoding restricts the choice of simulation algorithms.

Trotter Sparsity
(product formulas) | (more advanced)
Direct v v/
Compact | X v

Using compact mapping results in longer circuits.

Near-term ¥ Variational ¥ Direct+Trotter
Far-future ¥ Hamiltonian evolution ¥ Tight on gates?
' {Yes T Direct+Sparse
No ¥ Compact+Sparse



Measurement

Using QCs for simulating
spectroscopy is particularly
natural, as most of the LF
observables have the form of

O = poly(a,a’,b,b"), (9)

which can be easily measured in
the quantum computer, once
the final state is prepared.

TMSD (¥ ) &

—— A=0
-»- [dzx
Charge e

(Pasquini, Lorce, 2012)



NISQ: VQE + BLFQ

In order to bring the computational requirements to the range
of near-term devices, we shall use the Basis Light-Front
Quantization (BLFQ) technique:

BLFQ = Effective Light-Front Hamiltonian + Second Quantization
+ Smart Basis Choice

JFi=j&, &2, .0, (10)
where ¢; denote solutions of some single-particle equation —

not necessarily the plane waves!

Indeed, it makes sense to describe a confined system in the
basis of solutions of a harmonic oscillator.



NISQ: VQE + BLFQ -

How to extract the very essential information from QFT?

1. Restrict to the valence sector of the meson Fock space:
iqgi |, igq7di, iqagi, jaaggi, - (11)

2. Use relative momentum.

3. Use an effective interaction:?

2D HO
—
H= H0+HNJL,71' = Htransverse +H10ngitudinal+HNJL,7r . (12)

4. Use an efficient basis representation of the LF WF| the
eigenbasis of Hy:
I The spectrum Hy can be found analytically.
I Hj already incorporates confinement.
I Hiransverse stems from AdS/QCD and corresponds to the
linear confinement in equal time.

3 Jia et al., arXiv:1811.08512.


https://arxiv.org/abs/1811.08512

NISQ: VQE + BLFQ

We write the second-quantized quark Hamiltonian as:
H=H +Hy+..., (13)

where

Zh” i Ha= ) hiublbibh (g

i,0,k,l

For the minimal cutoffs, spec h;; = £139.62; 722.22; 827.82; 864.7%q,
with the two lowest eigenvalues corresponding to the masses of
m and p mesons.



VQE + BLFQ

Direct mapping, state:

. -,

j¥(0)1 = a1j00011 4+ 200101 4+ a3j01001 + a4j1000i . (15)
Multi-qubit Hamiltonian:

H =87397(IXXI+IYYI) 53725(YZZY + XZZX)
320161(111Z + ZIII) 173353(I1ZII + I11ZI)
+69936(IIYY + IIXX +YZYI+ XZXI
IYZY IXZX YYII XXII)+ 9870311111 .

(16)

Ansatz circuit (the angles 0,02, 039 are the VQE parameters):

Ry (62) ibmq_vigo v1.0.2
1] ? X €
moH 5

X
R, (65) ®



VQE + BLFQ

Compact mapping, state:
JY (@)1 = apoj00i + ap1jO1T 4+ a10j101 + ap1j1li . (17)
Multi-qubit Hamiltonian:

H =33671XX + 141122YY + 14680727

18
+ 49351511 + 139872(ZX X Z) . (18)

Ansatz circuit (the angles 601,605,039 are the VQE parameters):

1 Ry(01) R, (05) H—~]
Ry(92)




VQE + BLFQ

VQE minimization on ibmg_vigo, 8192 samples per term:

(6]

[

(=]
[
s

3-10° 1

Hamiltonian expectation value, MeV?

—— Exact; Direct enc.

—— Classical sampling; Direct enc.
—— ibmq_vigo; Direct enc.

—— ibmgq_vigo (err. mit.); Direct enc.

- = Exact; Compact enc.

—--- Classical sampling; Compact enc.
--- ibmq_vigo; Compact enc.
ibmq_vigo (err. mit.); Compact enc.

Optimization steps



VQE improvements and BLFQ variants Zn

General / vanilla VQE setting: BLFQ variants:
I H = poly(a,a¥,b,tY). I Various interactions:
I Direct mapping only, because: Phenomenological (e.g. NJL)

I Ansatz: Unit Coupled Cluster.
ns.a 7 DAty LOUPIEE VS Bfective (e.g. one g exchange)
I Various observables can be #

calculated efficiently. Dynamical gluons (QCD).

I Various basis choices: 3DHO,

VQE enhancements: 2DHO + plane waves, etc.

I Pauli term reduction.
I Contextual subspace VQE.
I Sparse measurements.

I Tapering off qubits.

|

Extrapolation techniques.



Key Takeaways Zn

Numerous advantages of the second-quantized LF
Hamiltonian formulation come in handy at the stage of
quantum simulation.

Various LF models (phenomenology, ab initio) and quantum
simulation algorithms (heuristic, Hamiltonian evolution)
can be employed, depending on available resources.

Results:

* 2002.04016 — adiabatic preparation of interacting
eigenstates. Qubit counts and observables for Yukawaj+1
and QCDg, 4.

* 2105.10941 — details of sparsity-based simulation in the
compact encoding.

* 2011.13443, 2009.07885 — variational algorithms, unitary
coupled cluster, BLFQ-NJL model of light mesons.

Several approaches to the simulation of scattering are
currently under development.



Thank YOU!!
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